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Introduction

The US population is aging, and the healthcare system 
needs to be well equipped for detecting and treating 
conditions associated with elderly patients1. Osteoporosis, 
as defined by the Consensus Development Conference, is a 
systemic skeletal disease characterized by low bone mass 
and microarchitectural deterioration of bone tissue with a 
consequent increase in bone fragility and susceptibility to 
fracture2. In the United States, the prevalence of osteoporosis 
in women >65 years old is over 25% with the number of 
annual osteoporosis-related fractures estimated to exceed 
2 million3,4. Osteoporosis-related fractures are associated 
with increased mortality, decreased quality of life, and high 
costs5. The mortality rate following osteoporotic hip fracture 
is particularly high, at 8% in men and 3% in women. In the 
US, approximately 31,000 deaths occur within 6 months 
of hip fracture annually5. Additionally, hip fractures are 
associated with high levels of morbidity such as pneumonia, 
chronic pain, UTIs, pressure sores, inability to return to 
ambulation, and inability to return to living independently5. 

Given this, the US Preventive Services Task Force, as well 
as numerous other groups, have published osteoporosis 
screening guidelines which call for screening of women >65 
years old1. 

Dual-energy X-ray absorptiometry (DEXA) is the gold 
standard in osteoporosis screening which measures bone 
mineral density (BMD)1. By DEXA, osteoporosis is defined as 
a T-score of 2.5 standard deviations or less than the average 
BMD for a 30-year-old (peak BMD). Unfortunately, screening 
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is severely underutilized, with some studies reporting at least 
40% of women eligible for screening not receiving it6-8. The 
reason for the high rate of undetected cases of osteoporosis 
is likely multifactorial. DEXA scans can be time consuming 
for patients, with the need to attend a follow up appointment, 
and require dedicated trained technologists to perform the 
studies. Many healthcare institutions do not have adequate 
resources to provide widely-available DEXA scans in their 
communities. Additionally, disparities in socioeconomic 
status, health insurance type, transportation, and ability 
to take time off work are likely contributory6,7,10-13. This 
opens the door for the use of new or adjunct screening tests 
that are efficient with no need for a separate appointment, 
allowing more patients to be screened. 

In efforts to expand access to screening, low-cost imaging 
alternatives to the DEXA scan, such as quantitative ultrasound, 
have emerged15,16. Further, simple anthropometric measures, 
notably calf and arm circumference, have been correlated 
with DEXA scan T-scores, muscle mass, and strength17-20. 
This holds true even in obesity, as it is suggested the 
excess weight bearing has a muscle training effect in this 
population18. In addition to circumference, increased muscle 
volume has also been shown to correlate with BMD21,22. 

Recently, low cost, portable topographical scanning 
technology has become available to digitally acquire 3D scans 
using mobile devices23. This method of body measurement 
has the potential to be used as an osteoporosis screening 
adjunct, especially in populations with limited access to 
DEXA scanning. Advantages of this digital 3D scanning over 
manual measurement of circumference include increased 
accuracy in ensuring the largest circumference of the 
extremity is obtained and the potential for applying machine 
learning algorithms to 3D scans in order to improve DEXA 
scan predictions. In addition, extremity volume is able to be 
obtained. In this study, we hypothesized that 3D scanning of 
arm and calf circumference and volume will correlate with 
DEXA T-scores. 

Materials and Methods

A prospective observational study was performed at a 
single academic institution. Inclusion criteria were female 
patients 40 years or older who presented to the Stanford 
Orthopaedic Surgery Bone Health clinic with a DEXA scan 
completed within 10 months prior to enrollment or scheduled 
within the 30 days after enrollment. Exclusion criteria 
were patients unable to complete the consent and assent 
process, and patients who had already begun treatment for 
bone health (e.g., bisphosphonates). Stanford Orthopaedic 
Surgery Bone Health clinic treats at risk patients for fracture 
prevention, and thus has a patient population conducive to 
this study.

If the patient consented to participate, manual 
measurements of bilateral upper and lower extremity 
circumference at the largest region of the bicep and calf 
were taken. Then, a 3D topographical scan was performed in 

a private room in the clinic. Patients were age 40-94.
The topographical scan involved a 360-degree extremity 

scan using a Structure Sensor 3D camera mounted to an 
iPad (Figure 1). To prepare for scanning, clothing covering 
the upper arm and lower legs were removed (e.g., socks 
off and sleeves pulled up). Scans of the bilateral upper and 
lower extremities were performed, taking approximately 
5 minutes total per patient. These scans were then used 
to measure largest arm and calf circumferences. Arm 
and calf volume were also calculated with TechMed 3D 
MSoft (Québec, Canada) (Figure 2). In some instances, 
one of the patient’s extremity scans taken in clinic was of 
poor technical quality (e.g., left calf) but the rest of that 
patient’s scans were satisfactory. This can happen if the 
patient moves suddenly and inadvertently. In this case, the 
data taken from the rest of that patient’s extremity scans 
were included. Lastly, patient charts were retrospectively 
reviewed to collect all available DEXA T-scores (including 
at the forearm, femoral neck, and lumbar spine) within 
10 months prior or 30 days after presentation to clinic. 
For all bilateral measurements, an average between the 
two sides was calculated. In cases where only one side of 
a bilateral measurement was available, this measurement 
was used as the “average” for correlation calculations. 
Correlation coefficients between manual measurements, 
topographical-based measurements, and DEXA T-score 

Figure 1. Structure Sensor 3D Camera on iPad.
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were calculated using SAS version 9.4 software using 
Pearson’s correlation coefficient. 

Results

96 female patients were enrolled with mean age of 
70.2 (SD = 10.4). The mean DEXA T-scores were -2.0 (SD 
= 0.9) at the femoral neck, -2.3 (SD = 1.6) at the forearm, 
and -1.7 (SD= 1.2) at the lumbar spine. Average extremity 
measurements are detailed in Table 1.

Forearm DEXA T-score was positively correlated with 
arm circumference (r = 0.49, p<0.01), arm volume (r=0.62, 
p<0.01), and calf volume (r=0.47, p<0.01). Femoral 
neck DEXA T-score was positively correlated with calf 
circumference (r=0.36, p<0.01) and calf volume (r=0.36, 
p<0.01). (Table 2). 

The average arm and calf circumference measured with 
the 3D topographical scan was strongly positively correlated 
to manually measured arm and calf circumference (r=0.75, 
p<0.01; r=0.72, p<0.01). Average arm and calf volume 
were also positively correlated with manually measured 
arm and calf circumference (r=0.54, p<0.01, r=0.51, 
p<0.01) (Table 3).

Discussion

To the best of our knowledge, this is the first study 
investigating the relationship of extremity circumference 
and volume to DEXA T-scores using a 3D topographical 
scan. Our hypothesis was that arm and calf circumference 
and volume would correlate with DEXA-T-scores given 
previous investigations using manual measurements17-22. 
Interestingly, our results showed forearm and femoral neck 
T-scores were more significantly correlated with arm and 
calf circumference and volume than lumbar T-scores. This is 

likely explained by the well documented limitation of DEXA 
scans in degenerative spine, especially given the age of our 
patient population24. The overall low DEXA T-score values of 
our sample are likely due to nature of the patient population 
of patients being evaluated at the bone health clinic. Also of 
interest is that the strongest correlation with forearm DEXA 
T-score was arm volume, which cannot be easily obtained 

Figure 2. Arm and Calf 3D Scans.

Characteristic N (%), Mean ± SD N data available

Female sex 96 (100%) 96

Age 70.4 ± 10.3 94

BMI 23.9 ± 4.62 85

DEXA T-score

Forearm -2.3 ± 1.6 30

Femoral Neck -2.0 ± 0.9 75

Lumbar Vertebra -1.7 ± 1.2 78

Average Circumference (manual)

Arm 28.0 ± 4.0 94

Calf 37.1 ± 3.0 93

Average Circumference (3D scan)

Arm 30.7 ± 3.9 92

Calf 35.7 ± 4.0 93

Average Volume (3D scan) 

Arm 1333.4 ± 397.6 79

Calf 2254.1 ± 591.3 82

Table 1. Baseline Characteristics.
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by a manual measurement. Overall, our results showed that 
3D scan measurements of arm and calf circumference and 
volume were correlated with DEXA T-scores, proving our 
hypothesis to be correct. 

There are multiple potential physiological explanations 
for why 3D topographical measurements correlate with 
DEXA T-scores. Smaller arm and calf circumferences have 
been shown to be potential markers of poor nutritional 
status, sarcopenia, physical performance, and frailty25,26. 
Poor nutritional status may result in insufficient nutrient 
availability for bone regeneration leading to osteopenia 
and osteoporosis26,27. Additionally, exercise is a well-
known protective factor against osteoporosis, and 
frailty could contribute to a vicious cycle of a sedentary 
lifestyle and continued muscle wasting and progression 
of osteoporosis27. Lastly, in women specifically, 
decreases in estrogen following menopause is a well-
known mediator in bone loss. In addition to bone loss, 
low estrogen levels have also been linked to decreases in 
muscle mass which would present in our study as lower 
topographical measurements28. The physiologic mediators 
linking osteoporosis as measured by DEXA T-score and 
topographical measurements are likely multifactorial but 

could include poor nutritional status, frailty and associated 
low levels of exercise, and low estrogen levels.

Evidence of underutilization of the DEXA scan has been 
well documented6-10,13,29. The reasons behind this have 
been explored, and several studies have shown evidence of 
disparities in race, sex, socioeconomic status, and health 
insurance type6,7,10-13. Similar disparities are seen in bone 
health outcomes, such as hip fracture incidence, highlighting 
the importance of actionable change to address these 
issues30. Lower socioeconomic status has been correlated 
with no show at follow-up appointments31. Driving forces 
behind the barriers to obtaining screening tests in general 
included lack of insurance, cost, having to take time off 
work, lack of childcare, and lack of transportation32. This 
highlights the value of creating adjunct screening tests that 
can be performed quickly, inexpensively, and without an 
additional appointment to optimize bone health outcomes 
for all patients when they may not be able to otherwise be 
screened for osteoporosis.

Total body volume and segmental body volume have 
been explored as tools for detection of various medical 
conditions33. This has previously been performed through 
water/air displacement, although this is often not easily 
accessible for patients and only allows for total body volume 
measurement34. Recently, 3D scanning has been shown 
to have strong correlations with these traditional methods 
for assessing volume33. However, the full clinical potential 
of these measurements has yet to be elucidated35. In 
addition to our results, others have shown manual extremity 
circumference measurements to correlate with 3D scanning 
measurements; however, 3D scanning allows for a more 
accurate assessment36. Our results showed multiple 
correlations between DEXA T-scores and 3D topographical 
measurements of circumference and volume. The clinical 
implications of our results are that this technology could be 

DEXA T-scores

Forearm Femoral Neck Lumbar Vertebrae

Corr 
coefficient

p value
Corr 

coefficient
p value

Corr 
coefficient

 p value

3D scan, Circumference

Arm Circumference, average 0.49 <0.01 0.3 <0.01 0.23  <0.01

Calf Circumference, average 0.29 <0.01 0.36 <0.01 0.04  <0.01

3D scan, Volume

Arm Volume, average 0.62 <0.01 0.23 <0.01 0.15  <0.01

Calf Volume, average 0.47 <0.01 0.36 <0.01 0.05  <0.01

Correlation coefficients >0.3 are bolded.

Table 2. Correlation between DEXA T-scores and 3D scan anthropometric measurements.

Manual 
Measurement

3D Circumference 3D volume

Arm, Average 0.75 * 0.54*

Calf, Average 0.72 * 0.51*

* = p value <0.001

Table 3. Correlation between manual circumference and 3D Scan 
measurement.
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used as an adjunct screening test in cases where patients 
express monetary or temporal limitations to getting their 
DEXA scan. Physicians could be equipped with a mobile 3D 
scanner in clinic and get an estimation of the patient’s risk 
in less than 10 minutes. Although this would not provide an 
exact measure of the patient’s BMD, it would help to address 
the disparities in osteoporosis screening by allowing for 
earlier detection and treatment in patients who would not 
have otherwise received it. 

There are limitations to this study. Firstly, the DEXA 
scans used in this study were performed at multiple facilities 
which could result in small variations between participant 
T-scores. Secondly, not every patient had forearm, lumbar, 
and femoral neck DEXA scores as well as circumference and 
volume measurements for each extremity. This, in many 
instances, is because a certain scan such as a forearm DEXA 
scan was not clinically relevant at the time of treatment, or 
a 3D scan was unable to be fully processed by our software. 
Another limitation of our study is that our sample size of 
96 patients is relatively small, but served it’s purpose as 
a proof-of-concept. Further studies with larger and more 
diverse sample sizes could provide additional evidence for 
the utility of mobile 3D scanning and are being planned 
for the future. Additionally, a limitation of our study is the 
retrospective nature of chart review for DEXA T-scores, 
introducing potential bias and missing data. Lastly, under our 
methodology, the 3D scan processing included some manual 
components. These components included selecting the body 
part of interest from the rest of the body and aligning it in 
our measurement software. As with any manual process or 
measurement, there is variation that can be introduced. We 
hope to address this in the future by creating a system for 
automatic processing of the scans. Despite these limitations, 
we believe that 3D scanning is a promising tool for an 
osteoporosis screening adjunct. 

In conclusion, our results show significant positive 
correlations between DEXA scan measurements, the 
gold standard for osteoporosis screening, and 3D scan 
anthropometric extremity measurements. 3D scanning has 
the potential to offer a quick, accurate, noninvasive, and 
inexpensive method to estimate BMD when DEXA scanning 
is not available.

Ethics approval

Approval was obtained from the Stanford University 
Institutional Review Board, IRB #60296.
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